Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 178
Filtrar
1.
J Diabetes Complications ; 38(6): 108747, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643555

RESUMO

Information on BMI and risk of developing hypertension in type 1 diabetes (T1D) is scarce, and it comes mostly from cross-sectional analyses. This study underscores a risk of developing hypertension in T1D individuals with high BMI, and this risk appears to be higher than in those with type 2 diabetes.

2.
Diabetologia ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38625583

RESUMO

AIMS/HYPOTHESIS: This study aimed to explore the added value of subgroups that categorise individuals with type 2 diabetes by k-means clustering for two primary care registries (the Netherlands and Scotland), inspired by Ahlqvist's novel diabetes subgroups and previously analysed by Slieker et al. METHODS: We used two Dutch and Scottish diabetes cohorts (N=3054 and 6145; median follow-up=11.2 and 12.3 years, respectively) and defined five subgroups by k-means clustering with age at baseline, BMI, HbA1c, HDL-cholesterol and C-peptide. We investigated differences between subgroups by trajectories of risk factor values (random intercept models), time to diabetes-related complications (logrank tests and Cox models) and medication patterns (multinomial logistic models). We also compared directly using the clustering indicators as predictors of progression vs the k-means discrete subgroups. Cluster consistency over follow-up was assessed. RESULTS: Subgroups' risk factors were significantly different, and these differences remained generally consistent over follow-up. Among all subgroups, individuals with severe insulin resistance faced a significantly higher risk of myocardial infarction both before (HR 1.65; 95% CI 1.40, 1.94) and after adjusting for age effect (HR 1.72; 95% CI 1.46, 2.02) compared with mild diabetes with high HDL-cholesterol. Individuals with severe insulin-deficient diabetes were most intensively treated, with more than 25% prescribed insulin at 10 years of diagnosis. For severe insulin-deficient diabetes relative to mild diabetes, the relative risks for using insulin relative to no common treatment would be expected to increase by a factor of 3.07 (95% CI 2.73, 3.44), holding other factors constant. Clustering indicators were better predictors of progression variation relative to subgroups, but prediction accuracy may improve after combining both. Clusters were consistent over 8 years with an accuracy ranging from 59% to 72%. CONCLUSIONS/INTERPRETATION: Data-driven subgroup allocations were generally consistent over follow-up and captured significant differences in risk factor trajectories, medication patterns and complication risks. Subgroups serve better as a complement rather than as a basis for compressing clustering indicators.

3.
Front Endocrinol (Lausanne) ; 15: 1350796, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38510703

RESUMO

Introduction: Type 2 diabetes (T2D) onset, progression and outcomes differ substantially between individuals. Multi-omics analyses may allow a deeper understanding of these differences and ultimately facilitate personalised treatments. Here, in an unsupervised "bottom-up" approach, we attempt to group T2D patients based solely on -omics data generated from plasma. Methods: Circulating plasma lipidomic and proteomic data from two independent clinical cohorts, Hoorn Diabetes Care System (DCS) and Genetics of Diabetes Audit and Research in Tayside Scotland (GoDARTS), were analysed using Similarity Network Fusion. The resulting patient network was analysed with Logistic and Cox regression modelling to explore relationships between plasma -omic profiles and clinical characteristics. Results: From a total of 1,134 subjects in the two cohorts, levels of 180 circulating plasma lipids and 1195 proteins were used to separate patients into two subgroups. These differed in terms of glycaemic deterioration (Hazard Ratio=0.56;0.73), insulin sensitivity and secretion (C-peptide, p=3.7e-11;2.5e-06, DCS and GoDARTS, respectively; Homeostatic model assessment 2 (HOMA2)-B; -IR; -S, p=0.0008;4.2e-11;1.1e-09, only in DCS). The main molecular signatures separating the two groups included triacylglycerols, sphingomyelin, testican-1 and interleukin 18 receptor. Conclusions: Using an unsupervised network-based fusion method on plasma lipidomics and proteomics data from two independent cohorts, we were able to identify two subgroups of T2D patients differing in terms of disease severity. The molecular signatures identified within these subgroups provide insights into disease mechanisms and possibly new prognostic markers for T2D.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Proteômica , Multiômica
4.
Diabetologia ; 67(5): 885-894, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38374450

RESUMO

AIMS/HYPOTHESIS: People with type 2 diabetes are heterogeneous in their disease trajectory, with some progressing more quickly to insulin initiation than others. Although classical biomarkers such as age, HbA1c and diabetes duration are associated with glycaemic progression, it is unclear how well such variables predict insulin initiation or requirement and whether newly identified markers have added predictive value. METHODS: In two prospective cohort studies as part of IMI-RHAPSODY, we investigated whether clinical variables and three types of molecular markers (metabolites, lipids, proteins) can predict time to insulin requirement using different machine learning approaches (lasso, ridge, GRridge, random forest). Clinical variables included age, sex, HbA1c, HDL-cholesterol and C-peptide. Models were run with unpenalised clinical variables (i.e. always included in the model without weights) or penalised clinical variables, or without clinical variables. Model development was performed in one cohort and the model was applied in a second cohort. Model performance was evaluated using Harrel's C statistic. RESULTS: Of the 585 individuals from the Hoorn Diabetes Care System (DCS) cohort, 69 required insulin during follow-up (1.0-11.4 years); of the 571 individuals in the Genetics of Diabetes Audit and Research in Tayside Scotland (GoDARTS) cohort, 175 required insulin during follow-up (0.3-11.8 years). Overall, the clinical variables and proteins were selected in the different models most often, followed by the metabolites. The most frequently selected clinical variables were HbA1c (18 of the 36 models, 50%), age (15 models, 41.2%) and C-peptide (15 models, 41.2%). Base models (age, sex, BMI, HbA1c) including only clinical variables performed moderately in both the DCS discovery cohort (C statistic 0.71 [95% CI 0.64, 0.79]) and the GoDARTS replication cohort (C 0.71 [95% CI 0.69, 0.75]). A more extensive model including HDL-cholesterol and C-peptide performed better in both cohorts (DCS, C 0.74 [95% CI 0.67, 0.81]; GoDARTS, C 0.73 [95% CI 0.69, 0.77]). Two proteins, lactadherin and proto-oncogene tyrosine-protein kinase receptor, were most consistently selected and slightly improved model performance. CONCLUSIONS/INTERPRETATION: Using machine learning approaches, we show that insulin requirement risk can be modestly well predicted by predominantly clinical variables. Inclusion of molecular markers improves the prognostic performance beyond that of clinical variables by up to 5%. Such prognostic models could be useful for identifying people with diabetes at high risk of progressing quickly to treatment intensification. DATA AVAILABILITY: Summary statistics of lipidomic, proteomic and metabolomic data are available from a Shiny dashboard at https://rhapdata-app.vital-it.ch .


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Estudos Prospectivos , Peptídeo C , Proteômica , Insulina/uso terapêutico , Biomarcadores , Aprendizado de Máquina , Colesterol
5.
Diabetologia ; 67(5): 822-836, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38388753

RESUMO

AIMS/HYPOTHESIS: A precision medicine approach in type 2 diabetes could enhance targeting specific glucose-lowering therapies to individual patients most likely to benefit. We aimed to use the recently developed Bayesian causal forest (BCF) method to develop and validate an individualised treatment selection algorithm for two major type 2 diabetes drug classes, sodium-glucose cotransporter 2 inhibitors (SGLT2i) and glucagon-like peptide-1 receptor agonists (GLP1-RA). METHODS: We designed a predictive algorithm using BCF to estimate individual-level conditional average treatment effects for 12-month glycaemic outcome (HbA1c) between SGLT2i and GLP1-RA, based on routine clinical features of 46,394 people with type 2 diabetes in primary care in England (Clinical Practice Research Datalink; 27,319 for model development, 19,075 for hold-out validation), with additional external validation in 2252 people with type 2 diabetes from Scotland (SCI-Diabetes [Tayside & Fife]). Differences in glycaemic outcome with GLP1-RA by sex seen in clinical data were replicated in clinical trial data (HARMONY programme: liraglutide [n=389] and albiglutide [n=1682]). As secondary outcomes, we evaluated the impacts of targeting therapy based on glycaemic response on weight change, tolerability and longer-term risk of new-onset microvascular complications, macrovascular complications and adverse kidney events. RESULTS: Model development identified marked heterogeneity in glycaemic response, with 4787 (17.5%) of the development cohort having a predicted HbA1c benefit >3 mmol/mol (>0.3%) with SGLT2i over GLP1-RA and 5551 (20.3%) having a predicted HbA1c benefit >3 mmol/mol with GLP1-RA over SGLT2i. Calibration was good in hold-back validation, and external validation in an independent Scottish dataset identified clear differences in glycaemic outcomes between those predicted to benefit from each therapy. Sex, with women markedly more responsive to GLP1-RA, was identified as a major treatment effect modifier in both the UK observational datasets and in clinical trial data: HARMONY-7 liraglutide (GLP1-RA): 4.4 mmol/mol (95% credible interval [95% CrI] 2.2, 6.3) (0.4% [95% CrI 0.2, 0.6]) greater response in women than men. Targeting the two therapies based on predicted glycaemic response was also associated with improvements in short-term tolerability and long-term risk of new-onset microvascular complications. CONCLUSIONS/INTERPRETATION: Precision medicine approaches can facilitate effective individualised treatment choice between SGLT2i and GLP1-RA therapies, and the use of routinely collected clinical features for treatment selection could support low-cost deployment in many countries.


Assuntos
Diabetes Mellitus Tipo 2 , Inibidores do Transportador 2 de Sódio-Glicose , Masculino , Humanos , Feminino , Diabetes Mellitus Tipo 2/complicações , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Hipoglicemiantes/efeitos adversos , 60650 , Liraglutida/uso terapêutico , Teorema de Bayes , Glucose , Fenótipo , Receptor do Peptídeo Semelhante ao Glucagon 1
6.
Pharmacogenet Genomics ; 34(3): 73-82, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38179710

RESUMO

OBJECTIVE: The impact of CYP2C19 genotype on clopidogrel outcomes is one of the most well established pharmacogenetic interactions, supported by robust evidence and recommended by the Food and Drug Administration and clinical pharmacogenetics implementation consortium. However, there is a scarcity of large-scale real-world data on the extent of this pharmacogenetic effect, and clinical testing for the CYP2C19 genotype remains infrequent. This study utilizes the UK Biobank dataset, including 10 365 patients treated with clopidogrel, to offer the largest observational analysis of these pharmacogenetic effects to date. METHODS: Incorporating time-varying drug exposure and repeated clinical outcome, we adopted semiparametric frailty models to detect and quantify exposure-based effects of CYP2C19 (*2,*17) variants and nongenetic factors on the incidence risks of composite outcomes of death or recurrent hospitalizations due to major adverse cardiovascular events (MACE) or hemorrhage in the entire cohort of clopidogrel-treated patients. RESULTS: Out of the 10 365 clopidogrel-treated patients, 40% (4115) experienced 10 625 MACE events during an average follow-up of 9.23 years. Individuals who received clopidogrel (coverage >25%) with a CYP2C19*2 loss-of-function allele had a 9.4% higher incidence of MACE [incidence rate ratios (IRR), 1.094; 1.044-1.146], but a 15% lower incidence of hemorrhage (IRR, 0.849; 0.712-0.996). These effects were stronger with high clopidogrel exposure. Conversely, the gain-of-function CYP2C19*17 variant was associated with a 5.3% lower incidence of MACE (IRR, 0.947; 0.903-0.983). Notably, there was no evidence of *2 or *17 effects when clopidogrel exposure was low, confirming the presence of a drug-gene interaction. CONCLUSION: The impact of CYP2C19 on clinical outcomes in clopidogrel-treated patients is substantial, highlighting the importance of incorporating genotype-based prescribing into clinical practice, regardless of the reason for clopidogrel use or the duration of treatment. Moreover, the methodology introduced in this study can be applied to further real-world investigations of known drug-gene and drug-drug interactions and the discovery of novel interactions.


Assuntos
Intervenção Coronária Percutânea , Inibidores da Agregação Plaquetária , Humanos , Clopidogrel/efeitos adversos , Inibidores da Agregação Plaquetária/efeitos adversos , Farmacogenética , Citocromo P-450 CYP2C19/genética , Bancos de Espécimes Biológicos , 60682 , Hemorragia/induzido quimicamente , Genótipo , Resultado do Tratamento , Intervenção Coronária Percutânea/efeitos adversos
8.
Lancet Diabetes Endocrinol ; 12(2): 119-131, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38142707

RESUMO

BACKGROUND: Heterogeneity in type 2 diabetes can be represented by a tree-like graph structure by use of reversed graph-embedded dimensionality reduction. We aimed to examine whether this approach can be used to stratify key pathophysiological components and diabetes-related complications during longitudinal follow-up of individuals with recent-onset type 2 diabetes. METHODS: For this cohort analysis, 927 participants aged 18-69 years from the German Diabetes Study (GDS) with recent-onset type 2 diabetes were mapped onto a previously developed two-dimensional tree based on nine simple clinical and laboratory variables, residualised for age and sex. Insulin sensitivity was assessed by a hyperinsulinaemic-euglycaemic clamp, insulin secretion was assessed by intravenous glucose tolerance test, hepatic lipid content was assessed by 1 H magnetic resonance spectroscopy, serum interleukin (IL)-6 and IL-18 were assessed by ELISA, and peripheral and autonomic neuropathy were assessed by functional and clinical measures. Participants were followed up for up to 16 years. We also investigated heart failure and all-cause mortality in 794 individuals with type 2 diabetes undergoing invasive coronary diagnostics from the Ludwigshafen Risk and Cardiovascular Health (LURIC) cohort. FINDINGS: There were gradients of clamp-measured insulin sensitivity (both dimensions: p<0·0001) and insulin secretion (pdim1<0·0001, pdim2=0·00097) across the tree. Individuals in the region with the lowest insulin sensitivity had the highest hepatic lipid content (n=205, pdim1<0·0001, pdim2=0·037), pro-inflammatory biomarkers (IL-6: n=348, pdim1<0·0001, pdim2=0·013; IL-18: n=350, pdim1<0·0001, pdim2=0·38), and elevated cardiovascular risk (nevents=143, pdim1=0·14, pdim2<0·00081), whereas individuals positioned in the branch with the lowest insulin secretion were more prone to require insulin therapy (nevents=85, pdim1=0·032, pdim2=0·12) and had the highest risk of diabetic sensorimotor polyneuropathy (nevents=184, pdim1=0·012, pdim2=0·044) and cardiac autonomic neuropathy (nevents=118, pdim1=0·0094, pdim2=0·06). In the LURIC cohort, all-cause mortality was highest in the tree branch showing insulin resistance (nevents=488, pdim1=0·12, pdim2=0·0032). Significant gradients differentiated individuals having heart failure with preserved ejection fraction from those who had heart failure with reduced ejection fraction. INTERPRETATION: These data define the pathophysiological underpinnings of the tree structure, which has the potential to stratify diabetes-related complications on the basis of routinely available variables and thereby expand the toolbox of precision diabetes diagnosis. FUNDING: German Diabetes Center, German Federal Ministry of Health, Ministry of Culture and Science of the state of North Rhine-Westphalia, German Federal Ministry of Education and Research, German Diabetes Association, German Center for Diabetes Research, European Community, German Research Foundation, and Schmutzler Stiftung.


Assuntos
Complicações do Diabetes , Diabetes Mellitus Tipo 2 , Insuficiência Cardíaca , Resistência à Insulina , Humanos , Interleucina-18 , Estudos Prospectivos , Insulina/uso terapêutico , Lipídeos
9.
Lancet Diabetes Endocrinol ; 11(11): 848-860, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37804855

RESUMO

Diabetes is a highly heterogeneous condition; yet, it is diagnosed by measuring a single blood-borne metabolite, glucose, irrespective of aetiology. Although pragmatically helpful, disease classification can become complex and limit advances in research and medical care. Here, we describe diabetes heterogeneity, highlighting recent approaches that could facilitate management by integrating three disease models across all forms of diabetes, namely, the palette model, the threshold model and the gradient model. Once diabetes has developed, further worsening of established diabetes and the subsequent emergence of diabetes complications are kept in check by multiple processes designed to prevent or circumvent metabolic dysfunction. The impact of any given disease risk factor will vary from person-to-person depending on their background, diabetes-related propensity, and environmental exposures. Defining the consequent heterogeneity within diabetes through precision medicine, both in terms of diabetes risk and risk of complications, could improve health outcomes today and shine a light on avenues for novel therapy in the future.


Assuntos
Complicações do Diabetes , Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/terapia , Medicina de Precisão , Glucose
10.
Commun Med (Lond) ; 3(1): 131, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37794166

RESUMO

BACKGROUND: A precision medicine approach in type 2 diabetes requires the identification of clinical and biological features that are reproducibly associated with differences in clinical outcomes with specific anti-hyperglycaemic therapies. Robust evidence of such treatment effect heterogeneity could support more individualized clinical decisions on optimal type 2 diabetes therapy. METHODS: We performed a pre-registered systematic review of meta-analysis studies, randomized control trials, and observational studies evaluating clinical and biological features associated with heterogenous treatment effects for SGLT2-inhibitor and GLP1-receptor agonist therapies, considering glycaemic, cardiovascular, and renal outcomes. After screening 5,686 studies, we included 101 studies of SGLT2-inhibitors and 75 studies of GLP1-receptor agonists in the final systematic review. RESULTS: Here we show that the majority of included papers have methodological limitations precluding robust assessment of treatment effect heterogeneity. For SGLT2-inhibitors, multiple observational studies suggest lower renal function as a predictor of lesser glycaemic response, while markers of reduced insulin secretion predict lesser glycaemic response with GLP1-receptor agonists. For both therapies, multiple post-hoc analyses of randomized control trials (including trial meta-analysis) identify minimal clinically relevant treatment effect heterogeneity for cardiovascular and renal outcomes. CONCLUSIONS: Current evidence on treatment effect heterogeneity for SGLT2-inhibitor and GLP1-receptor agonist therapies is limited, likely reflecting the methodological limitations of published studies. Robust and appropriately powered studies are required to understand type 2 diabetes treatment effect heterogeneity and evaluate the potential for precision medicine to inform future clinical care.


This study reviews the available evidence on which patient features (such as age, sex, and blood test results) are associated with different outcomes for two recently introduced type 2 diabetes medications: SGLT2-inhibitors and GLP1-receptor agonists. Understanding what individual characteristics are associated with different response patterns may help clinical providers and people living with diabetes make more informed decisions about which type 2 diabetes treatments will work best for an individual. We focus on three outcomes: blood glucose levels (raised blood glucose is the primary symptom of diabetes and a primary aim of diabetes treatment is to lower this), heart disease, and kidney disease. We identified some potential factors that reduce effects on blood glucose levels, including poorer kidney function for SGLT2-inhibitors and lower production of the glucose-lowering hormone insulin for GLP1-receptor agonists. We did not identify clear factors that alter heart and kidney disease outcomes for either medication. Most of the studies had limitations, meaning more research is needed to fully understand the factors that influence treatment outcomes in type 2 diabetes.

11.
Mol Metab ; 77: 101807, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37717665

RESUMO

OBJECTIVES: Metformin is the first line therapy recommended for type 2 diabetes. However, the precise mechanism of action remains unclear and up to a quarter of patients show some degree of intolerance to the drug, with a similar number showing poor response to treatment, limiting its effectiveness. A better understanding of the mechanism of action of metformin may improve its clinical use. SLC2A2 (GLUT2) is a transmembrane facilitated glucose transporter, with important roles in the liver, gut and pancreas. Our group previously identified single nucleotide polymorphisms in the human SLC2A2 gene, which were associated with reduced transporter expression and an improved response to metformin treatment. The aims of this study were to model Slc2a2 deficiency and measure the impact on glucose homoeostasis and metformin response in mice. METHODS: We performed extensive metabolic phenotyping and 2-deoxy-2-[18F]fluoro-d-glucose ([18F]FDG)-positron emission tomography (PET) analysis of gut glucose uptake in high-fat diet-fed (HFD) mice with whole-body reduced Slc2a2 (Slc2a2+/-) and intestinal Slc2a2 KO, to assess the impact of metformin treatment. RESULTS: Slc2a2 partial deficiency had no major impact on body weight and insulin sensitivity, however mice with whole-body reduced Slc2a2 expression (Slc2a2+/-) developed an age-related decline in glucose homoeostasis (as measured by glucose tolerance test) compared to wild-type (Slc2a2+/+) littermates. Glucose uptake into the gut from the circulation was enhanced by metformin exposure in Slc2a2+/+ animals fed HFD and this action of the drug was significantly higher in Slc2a2+/- animals. However, there was no effect of specifically knocking-out Slc2a2 in the mouse intestinal epithelial cells. CONCLUSIONS: Overall, this work identifies a differential metformin response, dependent on expression of the SLC2A2 glucose transporter, and also adds to the growing evidence that metformin efficacy includes modifying glucose transport in the gut. We also describe a novel and important role for this transporter in maintaining efficient glucose homoeostasis during ageing.

12.
BMC Med ; 21(1): 304, 2023 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-37563596

RESUMO

BACKGROUND: Diabetic retinopathy (DR) is a major sight-threatening microvascular complication in individuals with diabetes. Systemic inflammation combined with oxidative stress is thought to capture most of the complexities involved in the pathology of diabetic retinopathy. A high level of neutrophil-lymphocyte ratio (NLR) is an indicator of abnormal immune system activity. Current estimates of the association of NLR with diabetes and its complications are almost entirely derived from cross-sectional studies, suggesting that the nature of the reported association may be more diagnostic than prognostic. Therefore, in the present study, we examined the utility of NLR as a biomarker to predict the incidence of DR in the Scottish population. METHODS: The incidence of DR was defined as the time to the first diagnosis of R1 or above grade in the Scottish retinopathy grading scheme from type 2 diabetes diagnosis. The effect of NLR and its interactions were explored using a competing risks survival model adjusting for other risk factors and accounting for deaths. The Fine and Gray subdistribution hazard model (FGR) was used to predict the effect of NLR on the incidence of DR. RESULTS: We analysed data from 23,531 individuals with complete covariate information. At 10 years, 8416 (35.8%) had developed DR and 2989 (12.7%) were lost to competing events (death) without developing DR and 12,126 individuals did not have DR. The median (interquartile range) level of NLR was 2.04 (1.5 to 2.7). The optimal NLR cut-off value to predict retinopathy incidence was 3.04. After accounting for competing risks at 10 years, the cumulative incidence of DR and deaths without DR were 50.7% and 21.9%, respectively. NLR was associated with incident DR in both Cause-specific hazard (CSH = 1.63; 95% CI: 1.28-2.07) and FGR models the subdistribution hazard (sHR = 2.24; 95% CI: 1.70-2.94). Both age and HbA1c were found to modulate the association between NLR and the risk of DR. CONCLUSIONS: The current study suggests that NLR has a promising potential to predict DR incidence in the Scottish population, especially in individuals less than 65 years and in those with well-controlled glycaemic status.


Assuntos
Diabetes Mellitus Tipo 2 , Retinopatia Diabética , Humanos , Retinopatia Diabética/diagnóstico , Retinopatia Diabética/epidemiologia , Neutrófilos , Diabetes Mellitus Tipo 2/epidemiologia , Incidência , Estudos Transversais , Linfócitos/patologia , Fatores de Risco , Escócia/epidemiologia
13.
medRxiv ; 2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37293003

RESUMO

Background: Ejection fraction (EF) is a key component of heart failure (HF) classification, including the increasingly codified HF with mildly reduced EF (HFmrEF) category. However, the biologic basis of HFmrEF as an entity distinct from HF with preserved EF (HFpEF) and reduced EF (HFrEF) has not been well characterized. Methods: The EXSCEL trial randomized participants with type 2 diabetes (T2DM) to once-weekly exenatide (EQW) vs. placebo. For this study, profiling of ∼5000 proteins using the SomaLogic SomaScan platform was performed in baseline and 12-month serum samples from N=1199 participants with prevalent HF at baseline. Principal component analysis (PCA) and ANOVA (FDR p<0.1) were used to determine differences in proteins between three EF groups, as previously curated in EXSCEL (EF>55% [HFpEF], EF 40-55% [HFmrEF], EF<40% [HFrEF]). Cox proportional hazards was used to assess association between baseline levels of significant proteins, and changes in protein level between baseline and 12-month, with time-to-HF hospitalization. Mixed models were used to assess whether significant proteins changed differentially with exenatide vs. placebo therapy. Results: Of N=1199 EXSCEL participants with prevalent HF, 284 (24%), 704 (59%) and 211 (18%) had HFpEF, HFmrEF and HFrEF, respectively. Eight PCA protein factors and 221 individual proteins within these factors differed significantly across the three EF groups. Levels of the majority of proteins (83%) demonstrated concordance between HFmrEF and HFpEF, but higher levels in HFrEF, predominated by the domain of extracellular matrix regulation, e.g. COL28A1 and tenascin C [TNC]; p<0.0001. Concordance between HFmrEF and HFrEF was observed in a minority of proteins (1%) including MMP-9 (p<0.0001). Biologic pathways of epithelial mesenchymal transition, ECM receptor interaction, complement and coagulation cascades, and cytokine receptor interaction demonstrated enrichment among proteins with the dominant pattern, i.e. HFmrEF-HFpEF concordance. Baseline levels of 208 (94%) of the 221 proteins were associated with time-to-incident HF hospitalization including domains of extracellular matrix (COL28A1, TNC), angiogenesis (ANG2, VEGFa, VEGFd), myocyte stretch (NT-proBNP), and renal function (cystatin-C). Change in levels of 10 of the 221 proteins from baseline to 12 months (including increase in TNC) predicted incident HF hospitalization (p<0.05). Levels of 30 of the 221 significant proteins (including TNC, NT-proBNP, ANG2) were reduced differentially by EQW compared with placebo (interaction p<0.0001). Conclusions: In this HF substudy of a large clinical trial of people with T2DM, we found that serum levels of most proteins across multiple biologic domains were similar between HFmrEF and HFpEF. HFmrEF may be more biologically similar to HFpEF than HFrEF, and specific related biomarkers may offer unique data on prognosis and pharmacotherapy modification with variability by EF.

14.
Diabetes Care ; 46(8): 1515-1523, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37308106

RESUMO

OBJECTIVE: South Asians are diagnosed with type 2 diabetes (T2D) more than a decade earlier in life than seen in European populations. We hypothesized that studying the genomics of age of diagnosis in these populations may give insight into the earlier age diagnosis of T2D among individuals of South Asian descent. RESEARCH DESIGN AND METHODS: We conducted a meta-analysis of genome-wide association studies (GWAS) of age at diagnosis of T2D in 34,001 individuals from four independent cohorts of European and South Asian Indians. RESULTS: We identified two signals near the TCF7L2 and CDKAL1 genes associated with age at the onset of T2D. The strongest genome-wide significant variants at chromosome 10q25.3 in TCF7L2 (rs7903146; P = 2.4 × 10-12, ß = -0.436; SE 0.02) and chromosome 6p22.3 in CDKAL1 (rs9368219; P = 2.29 × 10-8; ß = -0.053; SE 0.01) were directionally consistent across ethnic groups and present at similar frequencies; however, both loci harbored additional independent signals that were only present in the South Indian cohorts. A genome-wide signal was also obtained at chromosome 10q26.12 in WDR11 (rs3011366; P = 3.255 × 10-8; ß = 1.44; SE 0.25), specifically in the South Indian cohorts. Heritability estimates for the age at diagnosis were much stronger in South Indians than Europeans, and a polygenic risk score constructed based on South Indian GWAS explained ∼2% trait variance. CONCLUSIONS: Our findings provide a better understanding of ethnic differences in the age at diagnosis and indicate the potential importance of ethnic differences in the genetic architecture underpinning T2D.


Assuntos
Diabetes Mellitus Tipo 2 , População Europeia , População do Sul da Ásia , Humanos , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/etnologia , Diabetes Mellitus Tipo 2/genética , Etnicidade , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Idade de Início , Fatores Etários , População Europeia/genética , População do Sul da Ásia/genética
15.
medRxiv ; 2023 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-37131814

RESUMO

Background: A precision medicine approach in type 2 diabetes requires identification of clinical and biological features that are reproducibly associated with differences in clinical outcomes with specific anti-hyperglycaemic therapies. Robust evidence of such treatment effect heterogeneity could support more individualized clinical decisions on optimal type 2 diabetes therapy. Methods: We performed a pre-registered systematic review of meta-analysis studies, randomized control trials, and observational studies evaluating clinical and biological features associated with heterogenous treatment effects for SGLT2-inhibitor and GLP1-receptor agonist therapies, considering glycaemic, cardiovascular, and renal outcomes. Results: After screening 5,686 studies, we included 101 studies of SGLT2-inhibitors and 75 studies of GLP1-receptor agonists in the final systematic review. The majority of papers had methodological limitations precluding robust assessment of treatment effect heterogeneity. For glycaemic outcomes, most cohorts were observational, with multiple analyses identifying lower renal function as a predictor of lesser glycaemic response with SGLT2-inhibitors and markers of reduced insulin secretion as predictors of lesser response with GLP1-receptor agonists. For cardiovascular and renal outcomes, the majority of included studies were post-hoc analyses of randomized control trials (including meta-analysis studies) which identified limited clinically relevant treatment effect heterogeneity. Conclusions: Current evidence on treatment effect heterogeneity for SGLT2-inhibitor and GLP1-receptor agonist therapies is limited, likely reflecting the methodological limitations of published studies. Robust and appropriately powered studies are required to understand type 2 diabetes treatment effect heterogeneity and evaluate the potential for precision medicine to inform future clinical care. Plain language summary: This review identifies research that helps understand which clinical and biological factors that are associated with different outcomes for specific type 2 diabetes treatments. This information could help clinical providers and patients make better informed personalized decisions about type 2 diabetes treatments. We focused on two common type 2 diabetes treatments: SGLT2-inhibitors and GLP1-receptor agonists, and three outcomes: blood glucose control, heart disease, and kidney disease. We identified some potential factors that are likely to lessen blood glucose control including lower kidney function for SGLT2-inhibitors and lower insulin secretion for GLP1-receptor agonists. We did not identify clear factors that alter heart and renal disease outcomes for either treatment. Most of the studies had limitations, meaning more research is needed to fully understand the factors that influence treatment outcomes in type 2 diabetes.

16.
Diabetes Care ; 46(7): 1395-1403, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37146005

RESUMO

OBJECTIVE: To estimate the impact on lifetime health and economic outcomes of different methods of stratifying individuals with type 2 diabetes, followed by guideline-based treatment intensification targeting BMI and LDL in addition to HbA1c. RESEARCH DESIGN AND METHODS: We divided 2,935 newly diagnosed individuals from the Hoorn Diabetes Care System (DCS) cohort into five Risk Assessment and Progression of Diabetes (RHAPSODY) data-driven clustering subgroups (based on age, BMI, HbA1c, C-peptide, and HDL) and four risk-driven subgroups by using fixed cutoffs for HbA1c and risk of cardiovascular disease based on guidelines. The UK Prospective Diabetes Study Outcomes Model 2 estimated discounted expected lifetime complication costs and quality-adjusted life-years (QALYs) for each subgroup and across all individuals. Gains from treatment intensification were compared with care as usual as observed in DCS. A sensitivity analysis was conducted based on Ahlqvist subgroups. RESULTS: Under care as usual, prognosis in the RHAPSODY data-driven subgroups ranged from 7.9 to 12.6 QALYs. Prognosis in the risk-driven subgroups ranged from 6.8 to 12.0 QALYs. Compared with homogenous type 2 diabetes, treatment for individuals in the high-risk subgroups could cost 22.0% and 25.3% more and still be cost effective for data-driven and risk-driven subgroups, respectively. Targeting BMI and LDL in addition to HbA1c might deliver up to 10-fold increases in QALYs gained. CONCLUSIONS: Risk-driven subgroups better discriminated prognosis. Both stratification methods supported stratified treatment intensification, with the risk-driven subgroups being somewhat better in identifying individuals with the most potential to benefit from intensive treatment. Irrespective of stratification approach, better cholesterol and weight control showed substantial potential for health gains.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Hemoglobinas Glicadas , Estudos Prospectivos , Colesterol , Análise por Conglomerados , Análise Custo-Benefício , Anos de Vida Ajustados por Qualidade de Vida
17.
Eur Heart J Cardiovasc Pharmacother ; 9(6): 536-545, 2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37253618

RESUMO

BACKGROUND AND AIMS: The efficacy of statin therapy is hindered by intolerance to the therapy, leading to discontinuation. Variants in SLCO1B1, which encodes the hepatic transporter OATB1B1, influence statin pharmacokinetics, resulting in altered plasma concentrations of the drug and its metabolites. Current pharmacogenetic guidelines require sequencing of the SLCO1B1 gene, which is more expensive and less accessible than genotyping. In this study, we aimed to develop an easy, clinically implementable functional gene risk score (GRS) of common variants in SLCO1B1 to identify patients at risk of statin intolerance. METHODS AND RESULTS: A GRS was developed from four common variants in SLCO1B1. In statin users from Tayside, Scotland, UK, those with a high-risk GRS had increased odds across three phenotypes of statin intolerance [general statin intolerance (GSI): ORGSI 2.42; 95% confidence interval (CI): 1.29-4.31, P = 0.003; statin-related myopathy: ORSRM 2.51; 95% CI: 1.28-4.53, P = 0.004; statin-related suspected rhabdomyolysis: ORSRSR 2.85; 95% CI: 1.03-6.65, P = 0.02]. In contrast, using the Val174Ala genotype alone or the recommended OATP1B1 functional phenotypes produced weaker and less reliable results. A meta-analysis with results from adjudicated cases of statin-induced myopathy in the PREDICTION-ADR Consortium confirmed these findings (ORVal174Ala 1.99; 95% CI: 1.01-3.95, P = 0.048; ORGRS 1.76; 95% CI: 1.16-2.69, P = 0.008). For those requiring high-dose statin therapy, the high-risk GRS was more consistently associated with the time to onset of statin intolerance amongst the three phenotypes compared with Val174Ala (GSI: HRVal174Ala 2.49; 95% CI: 1.09-5.68, P = 0.03; HRGRS 2.44; 95% CI: 1.46-4.08, P < 0.001). Finally, sequence kernel association testing confirmed that rare variants in SLCO1B1 are associated with the risk of intolerance (P = 0.02). CONCLUSION: We provide evidence that a GRS based on four common SLCO1B1 variants provides an easily implemented genetic tool that is more reliable than the current recommended practice in estimating the risk and predicting early-onset statin intolerance.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases , Doenças Musculares , Humanos , Genótipo , Inibidores de Hidroximetilglutaril-CoA Redutases/efeitos adversos , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Transportador 1 de Ânion Orgânico Específico do Fígado/genética , Doenças Musculares/induzido quimicamente , Doenças Musculares/diagnóstico , Doenças Musculares/genética , Fenótipo , Fatores de Risco
18.
Sci Rep ; 13(1): 8366, 2023 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-37225853

RESUMO

Most biomedical knowledge is published as text, making it challenging to analyse using traditional statistical methods. In contrast, machine-interpretable data primarily comes from structured property databases, which represent only a fraction of the knowledge present in the biomedical literature. Crucial insights and inferences can be drawn from these publications by the scientific community. We trained language models on literature from different time periods to evaluate their ranking of prospective gene-disease associations and protein-protein interactions. Using 28 distinct historical text corpora of abstracts published between 1995 and 2022, we trained independent Word2Vec models to prioritise associations that were likely to be reported in future years. This study demonstrates that biomedical knowledge can be encoded as word embeddings without the need for human labelling or supervision. Language models effectively capture drug discovery concepts such as clinical tractability, disease associations, and biochemical pathways. Additionally, these models can prioritise hypotheses years before their initial reporting. Our findings underscore the potential for extracting yet-to-be-discovered relationships through data-driven approaches, leading to generalised biomedical literature mining for potential therapeutic drug targets. The Publication-Wide Association Study (PWAS) enables the prioritisation of under-explored targets and provides a scalable system for accelerating early-stage target ranking, irrespective of the specific disease of interest.


Assuntos
Sistemas de Liberação de Medicamentos , Descoberta de Drogas , Humanos , Estudos Prospectivos , Bases de Dados Factuais , Idioma
19.
medRxiv ; 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37090505

RESUMO

Patients with type 2 diabetes vary in their response to currently available therapeutic agents (including GLP-1 receptor agonists) leading to suboptimal glycemic control and increased risk of complications. We show that human carriers of hypomorphic T2D-risk alleles in the gene encoding peptidyl-glycine alpha-amidating monooxygenase (PAM), as well as Pam-knockout mice, display increased resistance to GLP-1 in vivo. Pam inactivation in mice leads to reduced gastric GLP-1R expression and faster gastric emptying: this persists during GLP-1R agonist treatment and is rescued when GLP-1R activity is antagonized, indicating resistance to GLP-1's gastric slowing properties. Meta-analysis of human data from studies examining GLP-1R agonist response (including RCTs) reveals a relative loss of 44% and 20% of glucose lowering (measured by glycated hemoglobin) in individuals with hypomorphic PAM alleles p.S539W and p.D536G treated with GLP-1R agonist. Genetic variation in PAM has effects on incretin signaling that alters response to medication used commonly for treatment of T2D.

20.
Diabetes Care ; 46(5): 967-977, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36944118

RESUMO

OBJECTIVE: To assess the real-world cardiovascular (CV) safety for sulfonylureas (SU), in comparison with dipeptidyl peptidase 4 inhibitors (DPP4i) and thiazolidinediones (TZD), through development of robust methodology for causal inference in a whole nation study. RESEARCH DESIGN AND METHODS: A cohort study was performed including people with type 2 diabetes diagnosed in Scotland before 31 December 2017, who failed to reach HbA1c 48 mmol/mol despite metformin monotherapy and initiated second-line pharmacotherapy (SU/DPP4i/TZD) on or after 1 January 2010. The primary outcome was composite major adverse cardiovascular events (MACE), including hospitalization for myocardial infarction, ischemic stroke, heart failure, and CV death. Secondary outcomes were each individual end point and all-cause death. Multivariable Cox proportional hazards regression and an instrumental variable (IV) approach were used to control confounding in a similar way to the randomization process in a randomized control trial. RESULTS: Comparing SU to non-SU (DPP4i/TZD), the hazard ratio (HR) for MACE was 1.00 (95% CI: 0.91-1.09) from the multivariable Cox regression and 1.02 (0.91-1.13) and 1.03 (0.91-1.16) using two different IVs. For all-cause death, the HR from Cox regression and the two IV analyses was 1.03 (0.94-1.13), 1.04 (0.93-1.17), and 1.03 (0.90-1.17). CONCLUSIONS: Our findings contribute to the understanding that second-line SU for glucose lowering are unlikely to increase CV risk or all-cause mortality. Given their potent efficacy, microvascular benefits, cost effectiveness, and widespread use, this study supports that SU should remain a part of the global diabetes treatment portfolio.


Assuntos
Diabetes Mellitus Tipo 2 , Inibidores da Dipeptidil Peptidase IV , Metformina , Humanos , Diabetes Mellitus Tipo 2/complicações , Hipoglicemiantes/efeitos adversos , Estudos de Coortes , Resultado do Tratamento , Compostos de Sulfonilureia/efeitos adversos , Metformina/efeitos adversos , Inibidores da Dipeptidil Peptidase IV/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...